Safety functions according to EN ISO 13849-1

Type	EC type test certificate	PL	Kat.	MTTF $_{\text {d }}$ [years]	$\begin{gathered} \mathrm{DC}_{\text {avg }} \\ {[\%]} \end{gathered}$	
Industrial door (signal transmission and switching devices)						
InTra6 2	E 6934 and ${ }^{4)}$	d	2	254	94	1)
InTra6 3	E 6935 and ${ }^{4)}$	e	3	247	95	1)
RFGate 2	E 6945 and ${ }^{4)}$	c	2	28.8	76	1)
RFGate 3	E 7161 and ${ }^{4)}$	d	3	46	77	1)
EsGate 2	E 6937 and ${ }^{4)}$	d	2	123	94	${ }^{2)}$
EsGate 3	E 6936 and ${ }^{4)}$	e	3	73	95	${ }^{2)}$
XRF	E 7239 and ${ }^{4)}$	C	2	98	82	1)
XRF	E 7239 and ${ }^{4)}$	d	3	98	82	1)
Machine safety (switching devices)						
EsMatix 3	E 7142 and $^{4,11)}$	e	3	100	90	${ }^{2)}$
ESD3	E 7259 and ${ }^{4,11)}$	e	3	24 (8)	99	$\begin{gathered} (2) \\ \mathrm{I}=500 \mathrm{~mA} \\ (\mathrm{I}=2 \mathrm{AA}) \end{gathered}$
ESR31C /32	E 7260 and ${ }^{4,111}$	e	3	26 (8)	99	$\begin{gathered} \hline 2) \\ I=500 \mathrm{~mA} \\ (1=2 \mathrm{~A}) \\ \hline \end{gathered}$

Type	EC type test certificate	PL	Kat.	MTTF $_{\text {d }}$ [years]	$\begin{gathered} \hline \mathrm{DC}_{\text {avg }} \\ {[\%]} \end{gathered}$	
Pedestrian door (revolving, sliding, swing door)						
PrimeTec A, PrimeScan A	4420512403013-001 ${ }^{71}$	d	2	253	86	8)
PrimeTec A, PrimeScan A	4420512403013-001 ${ }^{\text {7) }}$	d	3	281	91	9)
PrimeTec B, PrimeScan B	4420512403013-002 ${ }^{71}$	d	2	253	86	8)
PrimeTec B, PrimeScan B	4420512403013-003 ${ }^{71}$	d	2	253	86	10)
US beam, UniScan	4420512413806-001 ${ }^{\text {7 }}$	d	2	153	99	${ }^{8)}$

Type			MTTF $_{\text {d }}$ [years]	$\begin{gathered} \mathbf{B}_{10 \mathrm{~d}} \\ {[\mathrm{x}} \\ \left.\mathbf{x} 0^{6}\right] \end{gathered}$	
Safety edges; Safety mats; Forklift mats (Sensors)					
ELE	- -	-	3)	5	
XL	- -	-	3)	5	
ESM	- -	-	3)	6	
EMP	- -	-	${ }^{3}$	6	
Loop detectors					
ProLoop2			73	7	${ }^{6)}$
ProLoop lite			73	7	${ }^{6)}$

Type	MTTF with safety edge ${ }^{\text {1) }}$ [years]	MTTF $_{\mathbf{d}}$ with safety mat ${ }^{5}$) [years]
Industrial door (signal transmission and switching devices)		
InTra6 2	200	-
InTra6 3	167	-
RFGate 2	28	-
EsGate 2	266	-
EsGate 3	217	-
Machine safety (switching devices)	386	72
EsMatix 3	>100	14
ESD3	>100	15
ESR31C / 32		

1) Door application assumed parameters: $\mathrm{d}_{\mathrm{op}}=365 \mathrm{~d} / \mathrm{a}, \mathrm{h}_{\mathrm{op}}=24 \mathrm{~h} / \mathrm{d}$, $\mathrm{t}_{\text {cycle }}=3^{\prime} 600 \mathrm{~s}\left(\mathrm{n}_{\mathrm{op}}=8^{\prime} 760 / \mathrm{a}\right)$
2) Machine application assumed parameters: $d o p=365 \mathrm{~d} / \mathrm{a}$, hop $=24 \mathrm{~h} / \mathrm{d}$, tcycle $=60 \mathrm{~s}$ ($\mathrm{nop}=525^{\prime}$ '600/a)
3) MTTFd = level and value depending application (see calculation model page 3)
4) In combination with safety edges, certified according to EN ISO 13856-2
5) Assumed parameters: dop $=250 \mathrm{~d} / \mathrm{a}$, hop $=16 \mathrm{~h} / \mathrm{d}$, tcycle $=60$ s (nop $=280^{\prime} 000 / \mathrm{a}$)
6) Assumed parameters: $\mathrm{dop}=365 \mathrm{~d} / \mathrm{a}$, hop $=24 \mathrm{~h} / \mathrm{d}$, tcycle $=30$ s
7) EC type-examination certificate tested according to DIN EN ISO 13849-1 and EN 61508
8) Safety function presensce detection tested according DIN 18650 and EN 16005
9) Safety function motion in escape routes DIN 18650 and EN 16005
10) Safety function presensce detection tested according to EN 16005
11) In combination with safety mats, certified according to EN ISO 13856-1

Calculation signal transmission and switching units Products in accordance with DIN EN ISO 13849-1

How to determine the MTTF $_{d}$ of a sensor

Example 1: \quad Safety edge on a sliding gate with 2 actuations a day during 365 days a year. $\mathrm{n}_{\text {op }}=2$ actuations $/$ day $\times 365$ days $=730$ actuations a year MTTF $_{\mathrm{d}}=\mathrm{B}_{10 \mathrm{~d}} /\left(0,1 \times \mathrm{n}_{\text {op }}\right)=5$ '000’000 $/(0,1 \times 730)=68^{\prime} 493$ years \rightarrow „high"

Example 2: Safety mat installed in processing centre with 30 -s tact, 2 shifts during 250 days a year. $\mathrm{n}_{\text {op }}=60$ actuations $/ \mathrm{h} \times 16 \mathrm{~h} /$ day $\times 250$ days $=240^{\prime} 000$ actuations a year MTTF $_{\mathrm{d}}=\mathrm{B}_{10 \mathrm{~d}} /\left(0,1 \times \mathrm{n}_{\text {op }}\right)=6^{\prime} 000^{\prime} 000 /\left(0,1 \times 240^{\prime} 000\right)=250$ years \rightarrow „high"

How to determine the overall-MTTFd (simplified description!)

Example 3: Safety edge connected to signal transmission InTra6 2.
MTTF $_{\mathrm{d} \text { Sensor }}=68$ '493 years
MTTF $_{\mathrm{d} \text { Signal transmission }}=254$ years
\rightarrow MTTF $_{\mathrm{d}}=253$ years \rightarrow „high"
Note: \quad This calculation is highly simplified. The various MTTF $_{\mathrm{d}}$-values could be based on different actuations per year (n_{op}). Furthermore, the connection between sensor and switching device is not considered.

Glossary	$\mathrm{B}_{10 \mathrm{~d}}$ $\mathrm{DC}_{\text {avg }}$		
	Number of switching cycles, of which 10% of specimens failed during a lifetime test (for electromechanical components) Average diagnostics coverage, probability-based measure of the effectiveness of the diagnosis. It expresses the ratio between detected dangerous failures and the total number of hazardous errors (errors weighted with MTTF		
$\mathrm{MTTF}_{\mathrm{d}}$-value)		\quad	Meantime to a dangerous failure
:---			

